In this study, the thermal degradation behavior of epoxy composites formulates with a bisphenol A (BPA) and bisphenol F (BPF) resin blend, a reactive alkyl glycidyl ether diluent, and quartz filler, cured with a cycloaliphatic amine hardener was investigated. Thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (py-GC-MS) were employed to explore the degradation pathways and identify the key pyrolyzates. The results revealed that BPA and BPF degrade through distinct but interrelated mechanisms, producing major pyrolyzates such as phenol, BPA, and xanthene. The reactive diluent significantly influenced the pyrolysis profile by introducing unique long-chain hydrocarbons, alcohols, and ethers because of its incomplete incorporation into the polymer matrix. Despite its inert nature, the quartz filler reduced the abundance of pyrolyzates and increased the residual mass, improving the thermal stability of the composite without altering the degradation pathways. This study highlights the complex interplay between resin chemistry, reactive diluents, and fillers in determining thermal behavior. These insights are essential for optimising epoxy composite formulations to enhance their thermal stability and durability for high-performance applications.
Thermal degradation pathways in multi-component epoxy composites / D'Eusanio, Veronica; Rombolà, Alessandro Girolamo; Coralli, Irene; Fabbri, Daniele; Tassi, Lorenzo; Marchetti, Andrea. - In: JOURNAL OF ANALYTICAL AND APPLIED PYROLYSIS. - ISSN 0165-2370. - 189:(2025), pp. 1-11. [10.1016/j.jaap.2025.107107]
Thermal degradation pathways in multi-component epoxy composites
D'Eusanio, Veronica;Tassi, Lorenzo;Marchetti, Andrea
2025
Abstract
In this study, the thermal degradation behavior of epoxy composites formulates with a bisphenol A (BPA) and bisphenol F (BPF) resin blend, a reactive alkyl glycidyl ether diluent, and quartz filler, cured with a cycloaliphatic amine hardener was investigated. Thermogravimetric analysis (TGA) and pyrolysis-gas chromatography/mass spectrometry (py-GC-MS) were employed to explore the degradation pathways and identify the key pyrolyzates. The results revealed that BPA and BPF degrade through distinct but interrelated mechanisms, producing major pyrolyzates such as phenol, BPA, and xanthene. The reactive diluent significantly influenced the pyrolysis profile by introducing unique long-chain hydrocarbons, alcohols, and ethers because of its incomplete incorporation into the polymer matrix. Despite its inert nature, the quartz filler reduced the abundance of pyrolyzates and increased the residual mass, improving the thermal stability of the composite without altering the degradation pathways. This study highlights the complex interplay between resin chemistry, reactive diluents, and fillers in determining thermal behavior. These insights are essential for optimising epoxy composite formulations to enhance their thermal stability and durability for high-performance applications.| File | Dimensione | Formato | |
|---|---|---|---|
|
1-s2.0-S0165237025001603-main.pdf
Accesso riservato
Tipologia:
VOR - Versione pubblicata dall'editore
Licenza:
[IR] closed
Dimensione
3.31 MB
Formato
Adobe PDF
|
3.31 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
Pubblicazioni consigliate

I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris




