We derive matrix expressions in closed form for the higher-order moments, the autocovariance function and the spectral and bispectral densities of Markov switching bilinear models and their powers. Under suitable assumptions, we prove that the sample estimators of the spectral and bispectral density matrices are consistent and asymptotically normally distributed. A simulation study confirms the validity of the asymptotic properties. These methods are also well suited for the analysis of time series in the frequency domain, as shown in some proposed real-world examples.

(Bi)spectral analysis of Markov switching bilinear time series / Cavicchioli, Maddalena; Ghezal, Ahmed; Zemmouri, Imane. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - (2025), pp. 1-30. [10.1007/s10260-025-00826-9]

(Bi)spectral analysis of Markov switching bilinear time series

Cavicchioli, Maddalena
;
2025

Abstract

We derive matrix expressions in closed form for the higher-order moments, the autocovariance function and the spectral and bispectral densities of Markov switching bilinear models and their powers. Under suitable assumptions, we prove that the sample estimators of the spectral and bispectral density matrices are consistent and asymptotically normally distributed. A simulation study confirms the validity of the asymptotic properties. These methods are also well suited for the analysis of time series in the frequency domain, as shown in some proposed real-world examples.
2025
1
30
(Bi)spectral analysis of Markov switching bilinear time series / Cavicchioli, Maddalena; Ghezal, Ahmed; Zemmouri, Imane. - In: STATISTICAL METHODS & APPLICATIONS. - ISSN 1618-2510. - (2025), pp. 1-30. [10.1007/s10260-025-00826-9]
Cavicchioli, Maddalena; Ghezal, Ahmed; Zemmouri, Imane
File in questo prodotto:
File Dimensione Formato  
final_pubb_SMAP_2025.pdf

Open access

Tipologia: VOR - Versione pubblicata dall'editore
Dimensione 4.53 MB
Formato Adobe PDF
4.53 MB Adobe PDF Visualizza/Apri
Pubblicazioni consigliate

Licenza Creative Commons
I metadati presenti in IRIS UNIMORE sono rilasciati con licenza Creative Commons CC0 1.0 Universal, mentre i file delle pubblicazioni sono rilasciati con licenza Attribuzione 4.0 Internazionale (CC BY 4.0), salvo diversa indicazione.
In caso di violazione di copyright, contattare Supporto Iris

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11380/1391610
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact